4.7 Review

Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death

Journal

JOURNAL OF MOLECULAR MEDICINE-JMM
Volume 79, Issue 8, Pages 428-436

Publisher

SPRINGER
DOI: 10.1007/s001090100233

Keywords

tumor suppressor; neuroblastoma; apoptosis; caspase-8; methylation-specific polymerase chain reaction

Funding

  1. NCI NIH HHS [CA 21765, CA 67938] Funding Source: Medline

Ask authors/readers for more resources

Neuroblastomas that overexpress N-Myc due to amplification of the MYCN oncogene are aggressive tumors that become very resistant to treatment by chemotherapy and irradiation. to identify tumor suppressor genes in this group of neuroblastomas we analyzed the expression and function of both apoptosis-related cell cycle regulatory genes in cell lines and patient tumor samples. We found that in a high percentage of neuroblastoma cell lines and patient samples with amplified MYCN, caspase-8 mRNA is not expressed. The caspase-8 gene, CASP8, was deleted or silenced by methylation in the neuroblastoma cell lines while methylation of its promoter region was the predominant mechanism for its inactivation in the patient tumor samples. Reintroduction of caspase-8 into the neuroblastoma cell lines resensitized these cells to drug-induced and survival factor dependent apoptosis. Subsequently others have also shown that caspase-8 is silenced by methylation in neuroblastoma and peripheral neural ectodermal tumors, and that the caspase-9 regulator Apaf-1 is silenced by methylation in melanoma cell lines and patient samples. We conclude that caspase-8 acts as a tumor suppressor gene in neuroblastomas, that its silencing provides a permissive environment for MYCN gene amplification once the tumors are treated with chemotherapeutic drugs/irradiation, and that expression of this gene in these tumor cells may be of clinical benefit. We also discuss the possible significance of the neural crest cell progenitor cell origin and the silencing, of important apoptotic regulators via methylation in both neuroblastoma and melanoma tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available