4.7 Article

Choline deficiency induces apoptosis in primary cultures of fetal neurons

Journal

FASEB JOURNAL
Volume 15, Issue 10, Pages 1704-1710

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.00-0800com

Keywords

primary neurons; hippocampus; PC12 cells

Funding

  1. NIA NIH HHS [AG09525] Funding Source: Medline
  2. NIDDK NIH HHS [DK56350] Funding Source: Medline

Ask authors/readers for more resources

Treatment of rats with choline during brain development results in long-lasting enhancement of spatial memory whereas choline deficiency has the opposite effect. Changes in rates of apoptosis may be responsible. We previously demonstrated that choline deficiency induced apoptosis in PC12 cells and suggested that interruption of cell cycling due to a decrease in membrane phosphatidylcholine concentration was the critical mechanism. We now examine whether choline deprivation induces apoptosis in nondividing primary neuronal cultures of fetal rat cortex and hippocampus. Choline deficiency induced widespread apoptosis in primary neuronal cells, indicating that cells do not have to be dividing to be sensitive to choline deficiency. When switched to a choline-deficient medium, both types of cells became depleted of choline, phosphocholine and phosphatidylcholine, and in primary neurons neurite outgrowth was dramatically attenuated. Primary cells could be rescued from apoptosis by treatment with phosphocholine or lysophosphatidylcholine. As described previously for PC12 cells, an increase in ceramide (Cer) was associated with choline deficiency-induced apoptosis in primary neurons. The primary neuronal culture appears to be an excellent model to explore the mechanism whereby maternal dietary choline intake modulates apoptosis in the fetal brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available