4.2 Article

Different catalytic properties and inhibitor responses of the goldfish brain and ovary aromatase isozymes

Journal

GENERAL AND COMPARATIVE ENDOCRINOLOGY
Volume 123, Issue 2, Pages 180-191

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/gcen.2001.7661

Keywords

-

Funding

  1. NCI NIH HHS [CA44735] Funding Source: Medline
  2. NIEHS NIH HHS [ES08258] Funding Source: Medline

Ask authors/readers for more resources

The brain and ovarian aromatase isozymes of goldfish (Carassius auratus) are encoded by different CYP19 genes. This study measured aromatase activity in the goldfish brain tissues. For a direct comparison of the properties of the two aromatase isozymes, Chinese hamster ovary cells were stably transfected with brain- and ovary-derived cDNAs (respectively, P450aromB and -A) and the properties of the expressed isozymes were compared. The kinetic parameters of the two isozymes were determined using androstenedione and testosterone as substrates and compared to those of human aromatase. Inhibition profile analyses on the two isozymes were performed using seven inhibitors [4-hydroxyandrostene-dione, 7 alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione, bridge (2,19-methyleneoxy)androstene-3,17-dione, aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole]. Except for AG, the compounds tested were found to be much stronger inhibitors against the ovary enzyme than the brain enzyme. In addition, the ovary isoform was more sensitive to two phytoestrogens, chrysin and 7,8-dihydroxyflavone, than the brain form. These studies reveal that catalytic properties of the goldfish aromatase isoforms are significantly different from those of human aromatase. In addition, differences in the K-i values of aromatase inhibitors for the two goldfish isoforms suggest structural variance in the active sites of these isozymes. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available