4.5 Article

Binaural processing model based on contralateral inhibition. I. Model structure

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 110, Issue 2, Pages 1074-1088

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1383297

Keywords

-

Ask authors/readers for more resources

This article presents a quantitative binaural signal detection model which extends the monaural model described by Dau et al. [J. Acoust. Soc. Am. 99, 3615-3622 (1996)]. The model is divided into three stages. The first stage comprises peripheral preprocessing in the right and left monaural channels. The second stage is a binaural processor which produces a time-dependent internal representation of the binaurally presented stimuli. This stage is based on the Jeffress delay line extended with tapped attenuator lines. Through this extension, the internal representation codes both interaural time and intensity differences. In contrast to most present-day models, which are based on excitatory-excitatory interaction, the binaural interaction in the present model is based on contralateral inhibition of ipsilateral signals. The last stage, a central processor, extracts a decision variable that can be used to detect the presence of a signal in a detection task, but could also derive information about the position and the compactness of a sound source. In two accompanying articles, the model predictions are compared with data obtained with human observers in a great variety of experimental conditions. (C) 2001 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available