3.8 Article

Folding of malate dehydrogenase inside the GroEL-GroES cavity

Journal

NATURE STRUCTURAL BIOLOGY
Volume 8, Issue 8, Pages 721-728

Publisher

NATURE AMERICA INC
DOI: 10.1038/90443

Keywords

-

Ask authors/readers for more resources

The chaperonin GroEL binds nonnative substrate protein in the hydrophobic central cavity of an open ring. ATP and GroES binding to the same ring converts this cavity into an encapsulated, hydrophilic chamber that mediates productive folding. A 'rack' mechanism of initial protein unfolding proposes that, upon GroES and ATP binding, the polypeptide is stretched between the binding sites on the twisting apical domains of GroEL before complete release into the chamber. Here, the structure of malate dehydrogenase (MDH) subunit during folding is monitored by deuterium exchange, peptic fragment production and mass spectrometry. When bound to GroEL, MDH exhibits a core of partially protected secondary structure that is only modestly deprotected upon ATP and GroES binding. Moreover, deprotection is broadly distributed throughout MDH, suggesting that it results from breaking hydrogen bonds between MDH and the cavity wall or global destabilization, as opposed to forced mechanical unfolding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available