4.6 Article

Surface modification of polypropylene membrane by low-temperature plasma treatment

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 81, Issue 6, Pages 1555-1566

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/app.1585

Keywords

plasma treatment; surface modification; polypropylene membrane

Ask authors/readers for more resources

Microporous polypropylene membranes were low temperature plasma treated with acrylic acid and allylamine. Parameters of plasma treatment were examined and optimized for the enhancement of membrane performance properties. Excess power damaged the membrane surface and excess monomer flow rate increased the reactor pressure to interfere with the glow discharge. Longer plasma treatment time resulted in even more plasma coating and micropore blocking. The contact angle with water decreased and wettabilities increased with the increase of plasma treatment time. Deposition of the plasma polymer on the membrane surface was confirmed by FTIR/ATR spectra of the treated surface. In determining the flux, the hydrophilicity of the surface played a role as important as that of the micropore size. Adequate plasma treatment could enhance both water flux and solute removal efficiency. Results from the BSA (bovine serum albumin) solution test confirmed that fouling was greatly reduced after the plasma treatment. The BSA solution flux through the plasma-treated membranes depended on pH, whereas pH variation had no serious effects on the untreated membrane. Modification of the surface charge by the plasma treatment should exert a substantial influence on the adsorption and removal of BSA. (C) 2001 John Wiley & Sons, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available