4.2 Article

Quantum computing and quadratically signed weight enumerators

Journal

INFORMATION PROCESSING LETTERS
Volume 79, Issue 4, Pages 173-179

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0020-0190(00)00222-2

Keywords

quantum computing; theory of computing; combinatorial problems; computational complexity

Ask authors/readers for more resources

We prove that quantum computing is polynomially equivalent to classical probabilistic computing with an oracle for estimating the value of simple sums, quadratically signed weight enumerators (QWGTs). The problem of estimating these sums is cast in terms of promise problems and has two interesting variants. An oracle for the unconstrained variant may be more powerful than quantum computing, while an oracle for a more constrained variant is efficiently solvable in the one-bit model of quantum computing. Thus, problems involving QWGTs yield new problems in BQPP (BQP promise problems) and a natural BQPP complete problem. They can be used to define and study complexity classes and their relationships to quantum computing. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available