4.7 Review

Physiological effects of vasopressin and atrial natriuretic peptide in the collecting duct

Journal

CARDIOVASCULAR RESEARCH
Volume 51, Issue 3, Pages 470-480

Publisher

OXFORD UNIV PRESS
DOI: 10.1016/S0008-6363(01)00248-6

Keywords

G-proteins; natriuretic peptide; second messengers; vasoactive agents

Ask authors/readers for more resources

Vasopressin plays a primary role in the concentration of urine to maintain body fluid homeostasis. The collecting duct as well as thick ascending limb is a major target site of vasopressin. The antidiuretic action of vasopressin is mediated by the V2 receptor in the basolateral membrane of principal cells in the collecting ducts. The binding of vasopressin to V2 receptors causes an activation of adenylate cyclase and a synthesis of cAMP. Vasopressin regulates water and ion transport through V2 receptor-mediated ion channels and transporters. In contrast, the Vla receptor mainly in the luminal membrane of distal nephron regulates basolateral V2 receptor-mediated action with regard to water and ion transport through the activation of G(q/11) and phosphoinositide turnover. Guanylate cyclase forms three types of ANP receptors, although NPR-A and B (GC-A and B) are biologically active and related to the synthesis of cGMP. Urodilatin, synthesized by the kidney, causes natriuresis by binding to GC-A in the collecting ducts. ANP causes diuresis and natriuresis, at least in part by inhibiting the V2 receptor-mediated action of AVP in the collecting ducts. The site of interaction of ANP and AVP is post cAMP synthesis, at least in the collecting ducts. The roles of AVP and ANP under pathophysiological conditions have been reported. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available