4.5 Article

Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli

Journal

BIOCHEMICAL JOURNAL
Volume 358, Issue -, Pages 263-268

Publisher

PORTLAND PRESS
DOI: 10.1042/0264-6021:3580263

Keywords

PhaC1; PHA biosynthesis; PHA synthase; polyhydroxyalkanoic acid

Ask authors/readers for more resources

In order to facilitate the large-scale preparation of active class II polyhydroxyalkanoate (PHA) synthase, we constructed a vector pT7-7 derivative that contains a modified phaC1 gene encoding a PHA synthase from Pseudomonas aeruginosa possessing six N-terminally fused histidine residues. Overexpression of this phaC1 gene under control of the strong circle divide 10 promoter was achieved in Escherichia coli BL21 (DE3). The fusion protein was deposited as inactive inclusion bodies in recombinant E. coli, and contributed approx. 30 % of total protein. The inclusion bodies were purified by selective solubilization, resulting in approx. 70-80% pure PHA synthase, then dissolved and denatured by 6 M guanidine hydrochloride. The denatured PHA synthase was reversibly immobilized on a Ni2+-nitrilotriacetate-agarose matrix. The matrix-bound fusion protein was refolded by gradual removal of the chaotropic reagent. This procedure avoided the aggregation of folding intermediates which often decreases the efficiency of refolding experiments. Finally, the refolded fusion protein was eluted with imidazole. The purified and refolded PHA synthase protein showed a specific enzyme activity of 10.8 m-units/mg employing (R/S)-3-hydroxydecanoyl-CoA as substrate, which corresponds to 270, of the maximum specific activity of the native enzyme. The refolding of the enzyme was confirmed by CD spectroscopy. Deconvolution of the spectrum resulted in the following secondary structure prediction: 10 % alpha -helix, 50 % beta -sheet and 40% random coil. Get filtration chromatography indicated an apparent molecular mass of 69 kDa for the refolded PHA synthase. However, light-scattering analysis of a 10-fold concentrated sample indicated a molecular mass of 128 kDa. These data suggest that the class II PHA synthase is present in an equilibrium of monomer and dimer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available