4.7 Article

Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter

Journal

CIRCULATION RESEARCH
Volume 89, Issue 4, Pages 365-372

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hh1601.094988

Keywords

blood pressure; renin-angiotensin system; brain; astrocyte; transgenic mouse

Funding

  1. NHLBI NIH HHS [HL55006, HL58048, HL61446] Funding Source: Medline

Ask authors/readers for more resources

In addition to the circulatory renin (REN)-angiotensin system (RAS), a tissue RAS having an important role in cardiovascular function also exists in the central nervous system. In the brain, angiotensinogen (AGT) is expressed in astrocytes and in some neurons important to cardiovascular control, but its functional role remains undefined. We generated a transgenic mouse encoding the human AGT (hAGT) gene under the control of the human glial fibrillary acidic protein (GFAP) promoter to experimentally dissect the role of brain versus systemically derived AGT. This promoter targets expression of transgene products to astrocytes, the most abundant cell type expressing AGT in brain. All transgenic lines exhibited hAGT mRNA expression in brain, with variable expression in other tissues. In one line examined in detail, transgene expression was high in brain and low in tissues outside the central nervous system, and the level of plasma hAGT was not elevated over baseline. In the brain, hAGT protein was mainly localized in astrocytes, but was present in neurons in the subfornical organ. Intracerebroventricular (ICV) injection of human REN (hREN) in conscious unrestrained mice elicited a pressor response, which was abolished by ICV preinjection of losartan. Double-transgenic mice expressing the hREN gene and the GFAP-hAGT transgene exhibited a 15-mm Hg increase in blood pressure and an increased preference for salt. Blood pressure in the hREN/GFAP-hAGT mice was lowered after ICV, but not intravenous losartan. These studies suggest that AGT synthesis in the brain has an important role in the regulation of blood pressure and electrolyte balance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available