4.6 Article

Identification of proximate regions in a complex of retinal guanylyl cyclase 1 and guanylyl cyclase-activating protein-1 by a novel mass spectrometry-based method

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 33, Pages 30648-30654

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M104121200

Keywords

-

Funding

  1. NEI NIH HHS [EY06641] Funding Source: Medline

Ask authors/readers for more resources

A key challenge in studying protein/protein interactions is to accurately identify contact surfaces, i.e. regions of two proteins that are in direct physical contact. Aside from x-ray crystallography and NMR spectroscopy few methods are available that address this problem. Although x-ray crystallography often provides detailed information about contact surfaces, it is limited to situations when a co-crystal of proteins is available. NMR circumvents this requirement but is limited to small protein complexes. Other methods, for instance protection from proteolysis, are less direct and therefore less informative. Here we describe a new method that identifies candidate contact surfaces in protein complexes. The complexes are first stabilized by cross-linking. They are then digested with a protease, and the cross-linked fragments are analyzed by mass spectrometry. We applied this method, referred to as COSUMAS (contact surfaces by mass spectrometry), to two proteins, retinal guanylyl cyclase 1 (RetGC1) and guanylyl cyclase-activating protein-1 (GCAP-1), that regulate cGMP synthesis in photoreceptors. Two regions in GCAP-1 and three in RetGC1 were identified as possible contact sites. The two regions of RetGC1 that are in the vicinities of Cys(741) and Cys(780) map to a kinase homology domain in RetGC1. Their identities as contact sites were independently evaluated by peptide inhibition analysis. Peptides with sequences from these regions block GCAP-1-mediated regulation of guanylyl cyclase at both high and low Ca2+ concentrations. The two regions of GCAP-1 cross-linked to these peptides were in the vicinities of Cys(17) and Cys(105) of GCAP-1. Peptides with sequences derived from these regions inhibit guanylyl cyclase activity directly. These results support a model in which GCAP-1 binds constitutively to RetGC1 and regulates cyclase activity by structural changes caused by the binding or dissociation of Ca2+.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available