4.6 Article

Detection of rare DNA targets by isothermal ramification amplification

Journal

GENE
Volume 274, Issue 1-2, Pages 209-216

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-1119(01)00607-2

Keywords

circular probe; rolling circle; ligation; polymerase chain reaction; lymphoma; isothermal amplification

Ask authors/readers for more resources

We described previously a novel DNA amplification technique, termed ramification amplification (RAM) (Zhang et al., Gene 211 (1998) 277). This method was designed to utilize a circular probe (C-probe) that is covalently linked by a DNA ligase when it hybridizes to a target. Then, a DNA polymerase extends the bound forward primer along the C-probe and continuously displaces a downstream strand, generating a multimeric single-stranded DNA (ssDNA), analogous to in vivo 'rolling circle' replication of bacteriophage. This multimeric ssDNA then serves as a template for multiple reverse primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex, and resulting in an exponential amplification. Previously, we were able to achieve a significant amplification using phi29 DNA polymerase that has a high processivity and strong displacement activity. However, due to the intrinsic limitations of the polymerase, we only achieved a sensitivity of 10,000 target molecules, which is insufficient for most practical uses. Therefore, we tested several DNA polymerases and found that exo(-) Bst DNA polymerase meets the requirement for high sensitivity. By further improving the assay condition and format, we are able to detect fewer than ten targets in 1 h and to apply successfully this method for detection of Epstein-Barr virus in human lymphoma specimens. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available