4.4 Article

Reduction of glial fibrillary acidic protein-immunoreactive astrocytes in some brain areas of old hairless rhino-j mice (hr-rh-j)

Journal

NEUROSCIENCE LETTERS
Volume 309, Issue 2, Pages 81-84

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/S0304-3940(01)02041-9

Keywords

hairless hr-rh-j mice; brain; glial fibrillary acidic protein-immunoreactive astrocytes; microglia

Categories

Ask authors/readers for more resources

Mutations in the hairless (hr) gene of mice result in ha ir follicle a nd other epithelia I defects. The hr gene is expressed at high levels in the brain where it probably participates in the survival and maintenance of some neuronal populations, but whether it also supports glial populations of the central nervous system has been not investigated. To clarify this, quantitative immunohistochemistry for astrocytes (glial fibrillary acidic protein (GFAP)) and microglial cells (CD11b macrophage antigen) was used in the brain of a mutant mouse strain, the hairless (hr-rh-j) type, which carries the homozygous hr gene rhino mutation. The glial cell density was assessed in the cerebral cortex, hippocampus, striatum, hypothalamus and cerebellum of young (3 months) and old (9 months) hr-rh-j mice. No significant differences were found between young wild-type and hr-rh-j mice. The density of GFAP immunoreactive astrocytes normally increased as a function of age, but in older hr-rh-j mice there was a severe reduction (P < 0.01) in the striatum, hypothalamus, and hippocampus. Conversely, the microglial cells were insensible to aging or to hr-rh-j mutation. These results suggest that the hr gene is involved in the maintenance of the GFAP immunoreactive cells in some cerebral areas. Nevertheless, because these animals do not show any neurological signs, the functional significance of the present findings remains to be established. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available