4.6 Article

Telomerase can inhibit the recombination-based pathway of telomere maintenance in human cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 34, Pages 32198-32203

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M104469200

Keywords

-

Funding

  1. NIA NIH HHS [AG07992, AG01228] Funding Source: Medline

Ask authors/readers for more resources

Telomere length can be maintained by telomerase or by a recombination-based pathway. Because individual telomeres in cells using the recombination-based pathway of telomere maintenance appear to periodically become extremely short, cells using this pathway to maintain telomeres may be faced with a continuous state of crisis. We expressed telomerase in a human cell line that uses the recombination-based pathway of telomere maintenance to test whether telomerase would prevent telomeres from becoming critically short and examine the effects that this might have on the recombination-based pathway of telomere maintenance. In these. cells, telomerase maintains the length of the shortest telomeres. In some cases, the long heterogeneous telomeres are completely lost, and the cells now permanently contain short telomeres after only 40 population doublings. This corresponds to a telomere reduction rate of 500 base pairs/population doubling, a rate that is much faster than expected for normal telomere shortening but is consistent with the rapid telomere deletion events observed in cells using the recombination-based. pathway of telomere maintenance (Murnane, J. P., Sabatier, L., Marder, B. A., and Morgan, W. F. (1994) EMBO J. 13, 4953-4962). We also observed reductions in the fraction of cells containing alternative lengthening of telomere-associated promyelocytic leukemia bodies and extrachromosomal telomere repeats; however, no alterations in the rate of sister chromatid exchange were observed. Our results demonstrate that human cells using the recombination-based pathway of telomere maintenance retain factors required for telomerase to maintain telomeres and that once the telomerase-based pathway of telomere length regulation is engaged, recombination-based elongation of telomeres can be functionally inhibited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available