4.7 Article

Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 311, Issue 4, Pages 657-679

Publisher

ACADEMIC PRESS LTD
DOI: 10.1006/jmbi.2001.4868

Keywords

lambdoid bacteriophages; bacteriophage diversity; bacteriophage genomes; integrase phylogeny; bacteriophage evolution

Funding

  1. NIAID NIH HHS [AI05371] Funding Source: Medline

Ask authors/readers for more resources

HK620 is a temperate lambdoid bacteriophage that adsorbs to the O-antigen of its host, Escherichia coli H. The genome of a temperature-sensitive clear-plaque mutant consists of 38,297 nucleotides in which we recognize 60 open reading frames (orfs). Eighteen of these lie in a region of the genome that we call the virion structure domain. The other 42 orfs lie in what we call the metabolic domain. Virions of HK620 resemble those of phage P22. The virion structural orfs encode three kinds of putative proteins relative to the virion proteins of P22: (1) those that are nearly (about 90%) identical; (2) those that are weakly (about 30%) identical; and (3) those composed of nearly and weakly identical segments. We hypothesize that these composite proteins form bridges between the virion proteins of the other two kinds. Three of the putative virion proteins that are only weakly identical to P22 proteins are 71, 60 and 79% identical to proteins encoded by the phage APSE-1, whose virions also resemble those of P22. Because the hosts of APSE-1 and HK620 have been separated from each other by an estimated 200 My, we propose using the amino acid differences that have accumulated in these proteins to estimate a biological clock for temperate lambdoid phages. The putative transcriptional regulatory gene circuitry of HK620 seems to resemble that of phage lambda. Integration, on the other hand, resembles that of satellite phage P4 in that the attP sequence lies between the leftward promoter and int rather than downstream of int. Comparing the metabolic domains of several lambdoid phage genomes reveals seven short conserved sequences roughly defining boundaries of functional modules. We propose that these boundary sequences are foci of genetic recombination that serve to assort the modules and make the metabolic domain highly mosaic genetically. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available