4.3 Article

All chick-a-dee calls are not created equally - Part II. Mechanisms for discrimination by sympatric and allopatric chickadees

Journal

BEHAVIOURAL PROCESSES
Volume 77, Issue 1, Pages 87-99

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.beproc.2007.06.008

Keywords

allopatric; chickadee; operant discrimination; mechanisms; songbirds; sympatric

Ask authors/readers for more resources

The 'chick-a-dee' call, common to all members of the genus Poecile, is used by both sexes throughout the year to putatively co-ordinate flock movements and register alarm. In some regions, two or more chickadee species occupy overlapping territories, and therefore it is essential that these sympatric species learn to discriminate between the acoustically similar calls of the species. Previous work from our laboratory has shown that black-capped (P. atricapillus) and mountain chickadees (P gambeli) discriminate between the species' calls and treat each species' calls as belonging to separate open-ended categories. In the current set of experiments we use an operant conditioning paradigm to gain an understanding of (1) how the birds perform this discrimination and (2) whether birds with different levels of experience with heterospecific calls perform this task differently. We use natural recordings of chick-a-dee calls and perform several manipulations to test the importance of the introductory 'chick-a' portion and the terminal 'dee' portion for discriminating among the calls of the two species. Evidence suggests that birds mainly use the terminal 'dee' portion, as all groups of birds responded similarly to these probe stimuli and control chick-a-dee calls. We propose that the terminal 'dee' portion, consisting of lower frequency notes, is more likely to be resistant to degradation, and therefore a more reliable species-specific marker. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available