4.6 Article

CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 5, Pages 2734-2742

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.5.2734

Keywords

-

Categories

Funding

  1. NHLBI NIH HHS [HL 59858] Funding Source: Medline
  2. NIAID NIH HHS [AI 95383, AI 27243, K08 AI 01581] Funding Source: Medline

Ask authors/readers for more resources

Cytotoxic effector phenotype and function of MHC-restricted Mycobacterium tuberculosis (MTB)-reactive CD4(+) and CD8(+) T lymphocytes were analyzed from healthy tuberculin skin test-positive persons. After stimulation in vitro with MTB, both CD4(+) and CD8(+) T cells up-regulated mRNA expression for granzyme A and B, granulysin, perforin, and CD95L (Fas ligand). mRNA levels for these molecules were greater for resting CD8+ than CD4(+) T cells. After MTB stimulation, mRNA levels were similar for both T cell subsets. Increased perforin and granulysin protein expression was confirmed in both in CD4(+) and CD8(+) T cells by flow cytometry. Both T cell subsets lysed MTB-infected monocytes. Biochemical inhibition of the granule exocytosis pathway in CD4(+) and CD8(+) T cells decreased cytolytic function by > 90% in both T cell subsets. Ab blockade of the CD95-CD95L interaction decreased cytolytic function for both T cell populations by 25%. CD4(+) and CD8(+) T cells inhibited growth of intracellular MTB in autologous monocytes by 74% and 84%, respectively. However, inhibition of perforin activity, the CD95-CD95L interaction, or both CTL mechanisms did not affect CD4(+) and CD8(+) T cell mediated restriction of MTB growth. Thus, perforin and CD95-CD95L were not involved in CD4(+) and CD8(+) T cell mediated restriction of MTB growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available