4.6 Review

Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 352, Issue -, Pages 46-61

Publisher

ELSEVIER
DOI: 10.1016/j.bbr.2017.09.038

Keywords

Social approach; Ultrasonic vocalizations; Repetitive behavior; Novel object recognition; Intellectual disability; Hippocampus; Shank2; Shank3

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [WO 1732/1-1]

Ask authors/readers for more resources

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, characterized by early-onset deficits in social behavior and communication across multiple contexts, together with restricted, repetitive patterns of behavior, interests, or activities. ASD is among the most heritable neuropsychiatric conditions with heritability estimates higher than 80%, and while available evidence points to a complex set of genetic factors, the SHANK (also known as ProSAP) gene family has emerged as one of the most promising candidates. Several genetic Shank mouse models for ASD were generated, including Shank1 knockout mice. Behavioral studies focusing on the Shank1 knockout mouse model for ASD included assays for detecting ASD-relevant behavioral phenotypes in the following domains: (I) social behavior, (II) communication, and (III) repetitive and stereotyped patterns of behavior. In addition, assays for detecting behavioral phenotypes with relevance to comorbidities in ASD were performed, including but not limited to (IV) cognitive functioning. Here, we summarize and discuss behavioral and neuronal findings obtained in the Shank1 knockout mouse model for ASD. We identify open research questions by comparing such findings with the symptoms present in humans diagnosed with ASD and carrying SHANK1 deletions. We conclude by discussing the implications of the behavioral and neuronal phenotypes displayed by the Shank1 knockout mouse model for the development of future pharmacological interventions in ASD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available