4.3 Review

Synaptically released zinc: Physiological functions and pathological effects

Journal

BIOMETALS
Volume 14, Issue 3-4, Pages 353-366

Publisher

SPRINGER
DOI: 10.1023/A:1012934207456

Keywords

-

Funding

  1. NINDS NIH HHS [NS42015, NS 46668, NS 38585] Funding Source: Medline

Ask authors/readers for more resources

In addition to its familiar role as a component of metalloproteins, zinc is also sequestered in the presynaptic vesicles of a specialized type of neurons called `zinc-containing' neurons. Here we review the physiological and pathological effects of the release of zinc from these zinc-containing synaptic terminals. The best-established physiological role of synaptically released zinc is the tonic modulation of brain excitability through modulation of amino acid receptors; prominent pathological effects include acceleration of plaque deposition in Alzheimer's disease and exacerbation of excitotoxic neuron injury. Synaptically released zinc functions as a conventional synaptic neurotransmitter or neuromodulator, being released into the cleft, then recycled into the presynaptic terminal. Beyond this, zinc also has the highly unconventional property that it passes into postsynaptic neurons during synaptic events, functioning analogously to calcium in this regard, as a transmembrane neural signal. To stimulate comparisons of zinc signals with calcium signals, we have compiled a list of the important parameters of calcium signals and zinc signals. More speculatively, we hypothesize that zinc signals may loosely mimic phosphate `signals' in the sense that signal zinc ions may commonly bind to proteins in a lasting manner (i.e., `zincylating' the proteins) with consequential changes in protein structure and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available