4.4 Article

Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 135, Issue 3, Pages 239-250

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jsbi.2001.4406

Keywords

-

Ask authors/readers for more resources

Electron tomography is a powerful technique capable of giving unique insights into the three-dimensional structural organization of pleomorphic biological objects. However, visualization and interpretation of the resulting volumetric data are hampered by an extremely low signal-to-noise ratio, especially when ice-embedded biological specimens are investigated. Usually, isosurface representation or volume rendering of such data is hindered without any further signal enhancement. We propose a novel technique for noise reduction based on nonlinear anisotropic diffusion. The approach combines efficient noise reduction with excellent signal preservation and is clearly superior to conventional methods (e.g., low-pass and median filtering) and invariant wavelet transform filtering. The gain in the signal-to-noise ratio is verified and demonstrated by means of Fourier shell correlation. Improved visualization performance after processing the 3D images is demonstrated with two examples, tomographic reconstructions of chromatin and of a mitochondrion. Parameter settings and discretization stencils are presented in detail. (C) 2001 Elsevier Science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available