4.8 Article

Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase

Journal

PLANT PHYSIOLOGY
Volume 127, Issue 1, Pages 173-183

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.127.1.173

Keywords

-

Categories

Ask authors/readers for more resources

Plant ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme composed of two large and two small subunits. Here, we report the structures of the maize (Zea mays) genes encoding AGP small subunits of leaf and endosperm. Excluding exon 1, protein-encoding sequences of the two genes are nearly identical. Exon I coding sequences, however, possess no similarity. Introns are placed in identical positions and exhibit obvious sequence similarity. Size differences are primarily due to insertions and duplications, hallmarks of transposable element visitation. Comparison of the maize genes with other plant AGP small subunit genes leads to a number of noteworthy inferences concerning the evolution of these genes. The small subunit gene can be divided into two modules. One module, encompassing all coding information except that derived from exon 1, displays striking similarity among all genes. It is surprising that members from eudicots form one group, whereas those from cereals form a second group. This implies that the duplications giving rise to family members occurred at least twice and after the separation of eudicots and monocot cereals. One intron within this module may have had a transposon origin. A different evolutionary history is suggested for exon 1. These sequences define three distinct groups, two of which come from cereal seeds. This distinction likely has functional significance because cereal endosperm AGPs are cytosolic, whereas all other forms appear to be plastid localized. Finally, whereas barley (Hordeum vulgare) reportedly employs only one gene to encode the small subunit of the seed and leaf, maize utilizes the two genes described here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available