4.5 Article

Alternate cadmium exposure differentially affects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

Journal

NEUROCHEMISTRY INTERNATIONAL
Volume 39, Issue 3, Pages 187-192

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0197-0186(01)00029-8

Keywords

aspartate and glutamine; cadmium; glutamate

Ask authors/readers for more resources

This work was designed to analyze the possible changes in glutamate, aspartate and glutamine content induced by cadmium exposure in the hypothalamus, striatum and prefrontal cortex of rats, using an alternate schedule of metal administration. Pubertal-adult differences were also evaluated. In adult control rats, glutamate and aspartate contents in the anterior hypothalamus decreased as compared to pubertal controls. After cadmium administration from day 30 to 60 of life, the content of anterior hypothalamic glutamate and aspartate diminished. In adult control animals, the glutamine content increased in mediobasal hypothalamus as compared to pubertal controls. After cadmium exposure from day 30 to 60 of life, the mediobasal glutamine content increased, and after cadmium treatment from day 60 to 90 of life, the mediobasal aspartate content decreased. In adult control rats the content of glutamine, glutamate and aspartate of the posterior hypothalamus decreased significantly. After cadmium administration in pubertal animals, posterior hypothalamic contents of glutamine, glutamate and aspartate diminished. Cadmium treatment of adult animals caused a decrease in glutamine content, as compared to controls. In adult control rats, only glutamate and aspartate content increased in the prefrontal cortex as compared to the values found in pubertal controls. When cadmium was administered to adult animals, only the aspartate content decreased. In the striatum, cadmium decreased the glutamine and aspartate contents when administered from day 60 to 90 of life. These data suggest that cadmium differentially affects amino acid metabolism in the hypothalamus, striatum and prefrontal cortex. Age-dependent effects of cadmium on these brain areas appeared to have occurred. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available