4.6 Article

The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 217, Issue 2, Pages 271-281

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2010.10.023

Keywords

Mouse model; Aneuploidy; Mental retardation

Funding

  1. European commission [LSHG-CT-2006-037627]
  2. National Centre for Scientific Research
  3. Conseil General du Loiret
  4. foundation Jerome Lejeune
  5. Region Centre
  6. MRC [G0601056, MC_U117527252] Funding Source: UKRI
  7. Medical Research Council [G0601056, MC_U117527252] Funding Source: researchfish

Ask authors/readers for more resources

Trisomy 21 or Down syndrome (DS) is the most common form of human aneuploid disorder. Increase in the copy number of human chromosome 21 genes leads to several alterations including mental retardation, heart and skeletal dysmorphologies with additional physiological defects. To better understand the genotype and phenotype relationships, several mouse models have been developed, including the transchromosomic Tc1 mouse, which carries an almost complete human chromosome 21, that displays several locomotor and cognitive alterations related to DS. In this report we explore the contribution of the genetic dosage of 47 mouse genes located in the most telomeric part of Hsa21, using a novel model, named Ms4Yah, carrying a deletion of the 2.2Mb Ctsb-Prmt2 genetic interval. We combine this deletion with the Tc1 Hsa21 in a rescue experiment. We could recapitulate most of the Tc1 phenotypes but we found no phenotypes induced by the Ms4Yah and no contribution to the Tc1-induced phenotypes even if we described new alteration in social preference but not in olfaction. Thus we conclude that the genes conserved between mouse and human, found in the most telomeric part of Hsa21, and trisomic in Tc1, are not contributing to the major Tc1 phenotypes, suggesting that the Cstb-Prmt2 region is not playing a major role in locomotor and cognitive deficits found in DS. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available