4.7 Article

Analysis of circadian and ultradian rhythms of skin surface properties of face and forearm of healthy women

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 117, Issue 3, Pages 718-724

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1046/j.0022-202x.2001.01433.x

Keywords

bioengineering; chronobiology; circadian rhythm; ultradian rhythm

Categories

Ask authors/readers for more resources

Biologic rhythms of cells and organisms are well documented and have been extensively studied at the physiologic and molecular levels. For the skin, many circadian changes have been investigated but few systematic studies comparing skin at different body sites have been reported. In this study we investigated facial and forearm skin circadian rhythms in eight healthy Caucasian women. Noninvasive methods were used to assess skin capacitance, sebum excretion, skin temperature, transepidermal water loss, and skin surface pH on fixed sites of the face and the volar forearm during a 48 h span under standardized environmental conditions. Using the cosinor or ANOVA methods, circadian rhythms could be detected for sebum excretion (face), transepidermal water loss (face and forearm), skin temperature (forearm), pH (face), and capacitance (forearm). No circadian rhythmicity was found for the other biophysical parameters. In addition to the 24 h rhythm component, rhythms with periods of 8 h were found for sebum excretion, of 8 and 12 h for transepidermal water loss (face and forearm), and of 12 h for skin temperature (forearm). Our study confirms that rhythms of skin surface parameters are readily measurable and that these rhythms differ between different sites. Furthermore, we demonstrate for the first time that, for transepidermal water loss (face and forearm), sebum excretion, and skin temperature (forearm), in addition to circadian rhythms, ultradian and/or component rhythms can be detected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available