4.6 Article

Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume 48, Issue 9, Pages 1938-1944

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/16.944180

Keywords

barrier height; Fermi-level pinning; hydrogen response; hydrogen sensors; Schottky diode

Ask authors/readers for more resources

Steady-state and transient hydrogen-sensing characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode under atmospheric conditions are presented and studied. In presence of oxide layer, the significant increase of barrier height improves the hydrogen sensitivity even at lower operating temperatures. Even at a very low hydrogen concentration environment, e.g., 15 ppm H-2 in air, a significant response is obtained. Two effects, i.e., the removal of Fermi-level pinning caused by the donor level in the oxide and the reduction of Pd metal work function dominate the hydrogen sensing mechanism. Furthermore, the reaction kinetics incorporating the water formation upon hydrogen adsorption is investigated. The initial heat of adsorption for the Pd/oxide interface is estimated to be 0.42 eV/hydrogen atom. The coverage dependent heat of adsorption plays an important role in hydrogen response under steady-state conditions. In accordance with the Temkin isotherm behavior, the theoretical prediction of interface coverage agrees well with the experimental results over more than three decades of hydrogen partial pressure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available