4.6 Review

Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 199, Issue 1, Pages 108-118

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2008.09.025

Keywords

Synaptic plasticity; Long-term potentiation; Long-term depression; Striatum; Basal ganglia; Memory

Funding

  1. European Community [HEALTH-2007-22918]
  2. Progetti Finalizzati Ministero della Salute
  3. Progetto Strategico
  4. Fondazione Cassa di Risparmio di Perugia
  5. EU [LSHM-CT-2007-037950]

Ask authors/readers for more resources

The striatum is the major division of the basal ganglia, representing the input station of the circuit and arguably the principal site within the basal ganglia where information processing occurs. Striatal activity is critically involved in motor control and learning. Many parts of the striatum are involved in reward processing and in various forms of learning and memory, such as reward-association learning. Moreover, the striatum appears to be a brain center for habit formation and is likely to be involved in advanced stages of addiction. The critical role played by the striatum in learning and cognitive processes is thought to be based on changes in neuronal activity when specific behavioral tasks are being learned. Accordingly, excitatory corticostriatal synapses onto both striatal projecting spiny neurons and interneurons are able to undergo the main forms of synaptic plasticity. including long-term potentiation, long-term depression, short-term forms of intrinsic plasticity and spike timing-dependent plasticity. These specific forms of neuroplasticity allow the short-term and long-term selection and differential amplification of cortical neural signals modulating the processes of motor and behavioral selection within the basal ganglia neural circuit. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available