4.6 Article

Heterogeneities of size and sexual dimorphism between the subdomains of the lateral-innervated accessory olfactory bulb (AOB) of Octodon degus (Rodentia: Hystricognathi)

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 198, Issue 2, Pages 306-312

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2008.11.009

Keywords

Vomeronasal system; Pheromones; Chemical communication; Octodontidae; Socio-sexual behaviour; Semiochemicals

Funding

  1. Fondecyt [1030522, 1061108, ENL 07/06]
  2. Mecesup UCH [0306]

Ask authors/readers for more resources

The vomeronasal system (VNS) of rodents participates in the regulation of a variety of social and sexual behaviours related to semiochemical communication. All rodents studied so far possess two parallel pathways from the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB). These segregated afferences express either Gi2 or Go protein alpha-subunits and innervate the rostral or caudal half of the AOB, respectively. In muroid rodents, such as rats and mice, both subdivisions of the ACB are of similar proportions: as there is no anatomical feature indicative of the segregation, histochemical detection has been required to portray its boundary. We studied the ACB of Octodon degus, a diurnal caviomorph rodent endemic to central Chile, and found several distinctive traits not reported in a rodent before: (i) the vomeronasal nerve innervates the AOB from its lateral aspect, in opposition to the medial innervation described in rabbits and muroids, (ii) an indentation that spans all layers delimits the boundary between the rostral and caudal AOB subdivisions (rAOB and cAOB, respectively), (iii) the rAOB is twice the size of the cADB and features more and larger glomeruli, and (iv) the rAOB, but not the cAOB, shows male-biased sexual dimorphisms in size and number of glomeruli, while the cAOB, but not the rAOB, shows a male-biased dimorphism in mitral cell density. The heterogeneities we describe here within AOB subdomains suggest that these segregated regions may engage in distinct operationalities. We discuss our results in relation to conspecific semiochemical communication in O. degus, and present it as a new animal model for the study of VNS neurobiology and evolution. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available