4.7 Article

The nature of excited-state absorption in polymethine and squarylium molecules

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/2944.979347

Keywords

excited state absorption; femtosecond; nonlinear optics; nonlinear spectroscopy; polymethine dyes; quantum chemical calculations; white-light continuum

Ask authors/readers for more resources

Subpicosecond transient absorption measurements were performed for several polymethine and squarylium dyes in ethanol solution and a polymeric host over the spectral range 400-1500 nm. A variety of nonlinear effects including saturable absorption, reverse saturable absorption, and gain were observed and analyzed. We observe strong excited-state absorption (ESA) in all dyes in the range 450-600 nm. We also report the first prediction and observation of additional ESA bands in the near-infrared range. The predictions were based on quantum chemical calculations and the ESA experiments were performed with femtosecond pump-continuum probe techniques. For polymethine dye 2-[2-[3-[(1,3-dihydro-3,3-dimethyl-1-phenyl-2H-indol-2-ylidene) ethylidene]-2-phenyl-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-1-phenylindolium perchorate, an additional ESA band was detected near 1250 nm, and for squarylium dye 1,3-Bis-[(1,3-dihydro-1-butyl-3,3-dimetyl-2H-benzo[e]indol-2-ylidene)methyl]squaraine, two additional ESA bands were found around 870- and 1380-nm, respectively. To further study the nature of these transitions, the steady-state excitation anisotropy was also studied and compared with predictions. The relationship between ESA spectra of organic dyes and their molecular structure is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available