4.5 Article

A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol

Journal

JOURNAL OF CHEMICAL THERMODYNAMICS
Volume 33, Issue 9, Pages 999-1014

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jcht.2000.0811

Keywords

prediction; gas hydrate; inhibition; mixed electrolyte solution; alcohol

Ask authors/readers for more resources

In this contribution, a generalized method for predicting gas hydrate formation conditions in the presence of aqueous solutions, HL1V calculations, is developed. Each phase is characterized separately. In this respect, the equation of Nasrifar et al. for calculating the activity of water in the presence of electrolytes and an alcohol is extended to water in various mixtures of electrolytes, alcohol and dissolved gas. An equation for calculating the activity of water in the presence of mixtures of electrolytes is also developed. These equations are then used to characterize the aqueous phase in HL1V calculations. The modified Patel-Teja equation of state is used to characterize the vapour phase and the statistical model of van der Waals and Platteeuw for the hydrate phase. The proposed model is then compared with experimental results and other available models. No adjustable or curve-fitting parameters are used. The agreement with experimental results is very good. The comparison with other models also indicates that the proposed model predicts incipient hydrate formation conditions as good as the other models and in most cases even better. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available