4.3 Review

What are the dielectric constants of proteins and how to validate electrostatic models?

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 44, Issue 4, Pages 400-417

Publisher

WILEY
DOI: 10.1002/prot.1106

Keywords

protein dielectric constants; electrostatic energies; self-energy; ion-pairs in proteins

Funding

  1. NIGMS NIH HHS [GM-40283] Funding Source: Medline

Ask authors/readers for more resources

Implicit models for evaluation of electrostatic energies in proteins include dielectric constants that represent effect of the protein environment. Unfortunately, the results obtained by such models are very sensitive to the value used for the dielectric constant. Furthermore, the factors that determine the optimal value of these constants are far from being obvious. This review considers the meaning of the protein dielectric constants and the ways to determine their optimal values. It is pointed out that typical benchmarks for validation of electrostatic models cannot discriminate between consistent and inconsistent models. In particular, the observed pK(a) values of surface groups can be reproduced correctly by models with entirely incorrect physical features. Thus, we introduce a discriminative benchmark that only includes residues whose pK(a) values are shifted significantly from their values in water. We also use the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) formulation to generate a series of models that move gradually from microscopic to fully macroscopic models. These include the linear response version of the PDLD/S models, Poisson Boltzmann (PB)-type models, and Tanford Kirkwwod (TK)-type models. Using our different models and the discriminative benchmark, we show that the protein dielectric constant, epsilon (p), is not a universal constant but simply a parameter that depends on the model used. It is also shown in agreement with our previous works that epsilon (p) represents the factors that are not considered explicitly. The use of a discriminative benchmark appears to help not only in identifying nonphysical models but also in analyzing effects that are not reproduced in an accurate way by consistent models. These include the effect of water penetration and the effect of the protein reorganization. Finally, we show that the optimal dielectric constant for self-energies is not the optimal constant for charge-charge interactions. Proteins 2001; 44:400-417. (C) 2001 Wiley-Liss,Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available