3.8 Article Proceedings Paper

Cardiac hypertrophy and failure: lessons learned from genetically engineered mice

Journal

ACTA PHYSIOLOGICA SCANDINAVICA
Volume 173, Issue 1, Pages 103-111

Publisher

WILEY
DOI: 10.1046/j.1365-201X.2001.00890.x

Keywords

cardiac; contractility; genetics; hypertrophy; knockout; mice; transgenic

Categories

Ask authors/readers for more resources

Congestive heart failure is a major and growing public health problem. Because of improved survival of myocardial infarction patients produced by thrombolytic therapy or per-cutaneous revascularization it represents the only form of cardiovascular disease with significantly increased incidence and prevalence. Clinicians view this clinical syndrome as the final common pathway of diverse pathologies such as myocardial infarction and haemodynamic overload. Insights into mechanisms for heart failure historically derived from physiological and biochemical studies which identified compensatory adaptations for the haemodynamic burden associated with the pathological condition including utilization of the Frank Starling mechanism, augmentation of muscle mass, and neurohormonal activation to increase contractility. Therapy has largely been phenomenological and designed to prevent or limit the deleterious effects of these compensatory processes. More recently insights from molecular and cell biology have contributed to a more mechanistic understanding of potential causes of cardiac hypertrophy and failure. Many different analytical approaches have been employed for this purpose. These include the use of conventional animal models which permit serial observation of the onset and progression of heart failure and a sequential analysis of underlying biochemical and molecular events. Neonatal murine cardiomyocytes have been a powerful tool to examine in vitro subcellular mechanisms devoid of the confounding functional effects of multicellular preparations and heterogeneity of cell type. Finally, significant progress has been made by utilizing tissue from human cardiomyopathic hearts explanted at the time of orthotopic transplantation. Each of these methods has significant advantages and disadvantages. Arguably the greatest advance in our understanding of cardiac hypertrophy and failure over the past decade has been the exploitation of genetically engineered mice as biological reagents to study in vivo the effects of alterations in the murine genome. The power of this approach, in principle, derives from the ability to precisely overexpress or ablate a gene of interest and examine the phenotypic consequences in a cardiac specific post-natal manner. In contrast to conventional animal models of human disease which employ some form of environmental stress, genetic engineering involves a signal known molecular perturbation which produces the phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available