4.4 Review

Tetrahydrobiopterin deficiencies without hyperphenylalaninemia:: Diagnosis and genetics of DOPA-responsive dystonia and sepiapterin reductase deficiency

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 74, Issue 1-2, Pages 172-185

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/mgme.2001.3213

Keywords

-

Ask authors/readers for more resources

DOPA responsive dystonia (DRD) and sepiapterin reductase (SR) deficiency are inherited disorders of tetrahydrobiopterin (BH4) metabolism characterized by the signs and symptoms related to monoamine neurotransmitter deficiency. In contrast to classical forms of BH4 deficiency DRD and SR deficiency present without hyperphenylalaninemia and thus cannot be detected by the neonatal screening for phenylketonuria (PKU). While DRD is mostly caused by autosomal dominant mutations in the GTP cyclohydrolase I gene (GCH1), SR deficiency is an autosomal. recessive disease. The most important biochemical investigations for the diagnosis of these neurological diseases includes CSF investigations for neurotransmitter metabolites and pterins as well as neopterin and biopterin production in cytokine-stimulated fibroblasts. Discovery of SR deficiency opened new insights into alternative pathways of the cofactor BH4 via carbonyl, aldose, and dihydrofolate reductases. As a consequence of the low dihydrofolate reductase activity in the brain, dihydrobiopterin intermediate accumulates and inhibits tyrosine and tryptophan hydroxylases and uncouples nitric oxide synthase (nNOS), leading to neurotransmitter deficiency and possibly also to neuronal cell death. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available