4.2 Article

Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 1, Issue 3, Pages 317-321

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2001.050

Keywords

nanostructured pentacene film; growth modes; morphology; current-voltage characteristics; atomic force m icroscopy; CP-AFM

Ask authors/readers for more resources

Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 Angstrom and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77x10(-6) V-1/2 ml(1/2) and an ideality factor of 18 for pentacene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available