4.5 Article

Olfactory eavesdropping between two competing stingless bee species

Journal

BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
Volume 65, Issue 4, Pages 763-774

Publisher

SPRINGER
DOI: 10.1007/s00265-010-1080-3

Keywords

Social information; Interceptive eavesdropping; Decision making; Dominance; Foraging; Cephalic labial glands

Funding

  1. UCSD
  2. NSF [IBN 0545856]
  3. UCSD Division of Biological Sciences
  4. Animal Behavior Society
  5. FAPESP [06/50809-7]
  6. Direct For Biological Sciences
  7. Division Of Integrative Organismal Systems [0910024] Funding Source: National Science Foundation

Ask authors/readers for more resources

Foragers can improve search efficiency, and ultimately fitness, by using social information: cues and signals produced by other animals that indicate food location or quality. Social information use has been well studied in predator-prey systems, but its functioning within a trophic level remains poorly understood. Eavesdropping, use of signals by unintended recipients, is of particular interest because eavesdroppers may exert selective pressure on signaling systems. We provide the most complete study to date of eavesdropping between two competing social insect species by determining the glandular source and composition of a recruitment pheromone, and by examining reciprocal heterospecific responses to this signal. We tested eavesdropping between Trigona hyalinata and Trigona spinipes, two stingless bee species that compete for floral resources, exhibit a clear dominance hierarchy and recruit nestmates to high-quality food sources via pheromone trails. Gas chromatography-mass spectrometry of T. hyalinata recruitment pheromone revealed six carboxylic esters, the most common of which is octyl octanoate, the major component of T. spinipes recruitment pheromone. We demonstrate heterospecific detection of recruitment pheromones, which can influence heterospecific and conspecific scout orientation. Unexpectedly, the dominant T. hyalinata avoided T. spinipes pheromone in preference tests, while the subordinate T. spinipes showed neither attraction to nor avoidance of T. hyalinata pheromone. We suggest that stingless bees may seek to avoid conflict through their eavesdropping behavior, incorporating expected costs associated with a choice into the decision-making process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available