4.6 Article

A role for calcium in stabilizing transport vesicle coats

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 36, Pages 34148-34155

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M105398200

Keywords

-

Ask authors/readers for more resources

Calcium has been implicated in regulating vesicle fusion reactions, but its potential role in regulating other aspects of protein transport, such as vesicle assembly, is largely unexplored. We find that treating cells with the membrane-permeable calcium chelator, 1,2-bis(2-amino-phenoxy)ethane-N,N,N ' ,N ' -tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), leads to a drams ic redistribution of the vesicle coat protein, coatomer, in the cell. We have used the cell-free reconstitution of coat-protomer I (COPI) vesicle assembly to characterize the mechanisms of this redistribution. We find that the recovery of COPI-coated Golgi vesicles is inhibited by the addition of BAPTA to the cell-free vesicle budding assay. When coatomer-coated membranes are incubated in the presence of calcium chelators, the membranes uncoat, indicating that calcium is necessary for maintaining the integrity of the coat. This uncoating is reversed by the addition of calcium. Interestingly, BAPTA, a calcium chelator with fast binding kinetics, is more potent at uncoating the coatomer-coated membrane than EGTA, suggesting that a calcium transient or a calcium gradient is important for stabilizing COPI vesicle coat. The primary target for the effects of calcium on coatomer recruitment is a step that occurs after ADP-ribosylation factor binding to the membrane. We suggest that a calcium gradient may serve to regulate the timing of vesicle uncoating.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available