4.5 Article

Ancient behaviors of larval amphibians in response to an emerging fungal pathogen, Batrachochytrium dendrobatidis

Journal

BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
Volume 63, Issue 2, Pages 241-250

Publisher

SPRINGER
DOI: 10.1007/s00265-008-0655-8

Keywords

Tadpoles; Aggregation; Schooling; Thermoregulation; Chytridiomycosis

Funding

  1. Budweiser Conservation Scholarship
  2. Howard Hughes Medical Institute
  3. National Science Foundation [DEB0213851, IBN9977063]

Ask authors/readers for more resources

Behaviors have evolved in response to various selection pressures over evolutionary time. However, not all behaviors are adaptive. Some presumably ancient behaviors, persistent for millions of years, may be detrimental in the face of novel selection pressures in modern times. These pressures include a multitude of emerging infectious diseases which may be stimulated by environmental changes. We examined how a globally emerging amphibian pathogen, Batrachochytrium dendrobatidis ( BD), affected two key evolutionarily persistent behaviors displayed by amphibian larvae: aggregation and thermoregulation. Larval aggregation behavior is often essential for foraging, thermoregulation, and antipredator defense, but varies among species. Thermoregulatory behavior speeds larval development in ephemeral habitats. Specifically, we examined whether aggregation and thermoregulatory behaviors changed when exposed to the BD pathogen in two species ( Bufo boreas and Rana cascadae) whose larvae aggregate in nature. In laboratory choice tests, larvae of neither species avoided infected conspecifics. BD-exposed B. boreas larvae aggregated, while unexposed R. cascadae larvae associated more frequently with BD-exposed conspecifics. There was no evidence of behavioral fever or altered thermoregulation in larvae of four species we examined (Pseudacris regilla, Rana aurora, B. boreas, R. cascadae). The absence of behavioral fever may suggest an inability of the larvae of some host species to mediate infection risk by this pathogen. Thermoregulatory behaviors may exhibit a high degree of evolutionary inertia in amphibian hosts because they are linked with host physiology and developmental rates, while altered aggregation behaviors could potentially elevate pathogen transmission rates, leading to increased infection risk in social amphibian species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available