4.6 Article

The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 37, Pages 34567-34572

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106073200

Keywords

-

Funding

  1. NEI NIH HHS [EY-12085] Funding Source: Medline

Ask authors/readers for more resources

Gap junctions are important in maintaining lens transparency and metabolic homeostasis. In this paper, we report that the gap junction-forming protein, connexin (Cx) 45.6, was specifically truncated during lens development and that the majority of the truncated fragments were located in the differentiated lens fibers. When isolated lens membranes were treated by caspase-3, the truncated fragments of Cx45.6 were reproduced, and this truncation occurred at the COOH terminus of Cx45.6. Moreover, when primary lens cells were treated with apoptosis-inducing reagents, Cx45.6 was cleaved similarly as the in vitro treatment by caspase-3, and this cleavage was blocked by a caspase-3 inhibitor. These results suggest that caspase-3 is responsible for the development-associated cleavage of Cx45.6. The cleavage site of Cx45.6 was identified between amino acid residues Glu(367) and Gly(368). We have shown previously that Ser(368). is an in vivo phosphorylated site by casein kinase II, and this specific phosphorylation leads to a rapid turnover of Cx45.6. Interestingly, we found here that when Ser(363) was phosphorylated by casein kinase II, the cleavage of Cx45.6 catalyzed by caspase-3 was inhibited. This study, for the first time, demonstrates that a connexin can be a direct target of an apoptotic protease and that cleavage by caspase-3-like protease leads to the development-associated truncation of a lens connexin. Finally, caspase-3-mediated cleavage can be regulated by casein kinase II-mediated phosphorylation, suggesting that Cx45.6 turnover and specific cleavage by caspase-3-like protease is alternatively modulated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available