4.6 Article

Monokine induced by IFN-γ is a dominant factor directing T cells into murine cardiac allografts during acute rejection

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 6, Pages 3494-3504

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.6.3494

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI040459, AI 40459] Funding Source: Medline

Ask authors/readers for more resources

The use of chemokine antagonism as a strategy to inhibit leukocyte trafficking into inflammatory sites requires identification of the dominant chemokines mediating recruitment. The chemokine(s) directing T cells into cardiac allografts during acute rejection remain(s) unidentified. The role of the CXC chemokines IFN-gamma inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) in acute rejection of A/J (H-2(a)) cardiac grafts by C57BL/6 (H-2(b)) recipients was tested. Intra-allograft expression of Mig was observed at day 2 posttransplant and increased to the time of rejection at day 7 posttransplant. IP-10 mRNA and protein production were 2.5- to 8-fold lower than Mig. Whereas allografts were rejected at day 7-9 in control recipients, treatment with rabbit antiserum to Mig, but not to IP-10, prolonged allograft survival up to day 19 posttransplant. At day 7 posttransplant, allografts from Mig antiserum-treated recipients had marked reduction in T cell infiltration. At the time of rejection in Mig antiserum-treated recipients (i.e., days 17-19), intra-allograft expression of macrophage-inflammatory protein-1 alpha, -1 beta, and their ligand CCR5 was high, whereas expression of CXCR3, the Mig receptor, was virtually absent. Mig was produced by the allograft endothelium as well as by recipient allograft-infiltrating macrophages and neutrophils, indicating the synergistic interactions between innate and adaptive immune compartments during acute rejection. Collectively, these results indicate that Mig is a dominant recruiting factor for alloantigen-primed T cells into cardiac allografts during acute rejection. Although Mig antagonism delays acute heart allograft rejection, the results also suggest that the alloimmune response circumvents Mig antagonism through alternative mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available