4.6 Article

Regulation of IgE production requires oligomerization of CD23

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 6, Pages 3139-3145

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.6.3139

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI07407, AI18697, AI44163] Funding Source: Medline

Ask authors/readers for more resources

Here we describe the production of a rabbit polyclonal Ab (RAS1) raised against the stalk of murine CD23. RAS1 inhibits release of CD23 from the surface of both M12 and B cells resulting in an increase of CD23 on the cell surface. Despite this increase, these cells are unable to bind IgE as determined by FACS. CD23 has previously been shown to bind IgE with both a high (4-10 x 10(7) M-1) and low (4-10 x 10(6) M-1) affinity. Closer examination by direct binding of I-125-IgE revealed that RAS1 blocks high affinity binding while having no effect on low affinity binding. These data support the model proposing that oligomers of CD23 mediate high affinity IgE binding. These experiments suggest that RAS1 binding to cell surface CD23 results in a shift from oligomers to monomers, which, according to the model, only bind IgE with low affinity. These experiments also suggest that high affinity binding of IgE is required for IgE regulation by CD23 and is demonstrated by the fact that treatment of Ag/Alum-immunized mice treated with RAS1 results in a significant increase in IgE production similar to the levels seen in CD23-deficient mice. These mice also had significantly decreased levels of serum soluble CD23 and Ag-specific IgG1. RAS1 had no effect on IgE or Ag-specific IgG1 production in CD23-deficient mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available