4.8 Article

Spontaneous generation of stable pnictinyl radicals from jack-in-the-box dipnictines: A solid-state, gas-phase, and theoretical investigation of the origins of steric stabilization

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 123, Issue 37, Pages 9045-9053

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja010615b

Keywords

-

Ask authors/readers for more resources

The molecular structures of the stable phosphinyl and arsinyl radicals, (.)PnR(2) [Pn = P (2): As (4); R = CH(SiMe3)(2)], have been determined by gas-phase electron diffraction (GED) in conjunction with ab initio molecular orbital calculations. The X-ray crystal structures of the corresponding dipnictines, the dimers, R(2)PnPnR(2) [Pn = P (1), As (3)], and the chloro derivatives R(2)PnCl [Pn = P (5), As (6)] have also been determined. Collectively, these structural investigations demonstrate that large distortions of the ligands attached to Pn occur when the pnictinyl radicals unite to form the corresponding dipnictine dimers. Principally, it is the shape and flexibility of the CH(SiMe3)2 ligands; that permit the formation of the P-P and As-As bonds in 1 and 3, respectively. However, theoretical studies indicate that in the process of pnictinyl radical dimerization to form 1 and 3, both molecules accumulate substantial amounts of potential energy and are thus primed to spring apart upon release from the solid state by melting, dissolution, or evaporation. The insights gleaned from these unusual systems have permitted a deeper understanding of the functioning of sterically demanding substituents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available