4.5 Article

Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider

Journal

BEHAVIORAL ECOLOGY
Volume 22, Issue 6, Pages 1187-1194

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/beheco/arr105

Keywords

chemical communication; cooperation; Eresidae; evolution of sociality; kin discrimination

Funding

  1. EU Marie Curie Excellence Grant [CODICES-EXT-CT-2004-014202]

Ask authors/readers for more resources

In animal societies, recognition of group members and relatives is an important trait for the evolution and maintenance of social behavior. In eusocial insects, nest mate recognition is based on cuticular hydrocarbons and allows colony members to reject competitors and parasites. The study of recognition cues in subsocial species can provide insights into evolutionary pathways leading to permanent sociality and kin-selected benefits of cooperation. In subsocial spiders, empirical evidence suggests the existence of both kin recognition and benefits of cooperating with kin, whereas the cues for kin recognition have yet to be identified. However, cuticular hydrocarbons have been proposed to be involved in regulation of tolerance and interattraction in spider sociality. Here, we show that subsocial Stegodyphus lineatus spiderlings have cuticular hydrocarbon profiles that are sibling-group specific, making cuticular hydrocarbons candidates for kin recognition cues. Our behavioral assays indicate that spiderlings can discriminate between cuticular cues from kin and nonkin: In a choice set-up, spiderlings more often chose to reside near cuticular chemical extracts of siblings compared with nonsiblings. Furthermore, we show that cuticular chemical composition changes during development, especially around the stage of dispersal, supporting the hypothesis that cuticular cues are involved in regulating conspecific tolerance levels. Lastly, our results indicate that the potential kin recognition cues might be branched alkanes that are influenced very little by rearing conditions and may be genetically determined. This indicates that a specific group of cuticular chemicals, namely branched alkanes, could have evolved to act as social recognition cues in both insects and spiders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available