4.6 Article

Shedding of membrane type matrix metalloproteinase 5 by a furin-type convertase - A potential mechanism for down-regulation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 38, Pages 35953-35960

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M103680200

Keywords

-

Ask authors/readers for more resources

The shedding of membrane-associated proteins has been recognized as a regulatory mechanism to either up-regulate or down-regulate cellular functions by releasing membrane-bound growth factors or removing ectodomains of adhesion molecules and receptors. We have reported previously that the ectoenzyme of membrane type matrix metalloproteinase 5 (MT5-MMP) is shed into extracellular milieu (Pei, D. (1999) J. BioL Chem. 274, 8925-8932). Here we present evidence that MT5-MMP is shed by a furin-type convertase activity in the trans-Golgi network. Among proteinase inhibitors screened, only decanoyl-Arg-Val-Lys-Arg-chloromethylketone, a known inhibitor for furin-type convertases, blocked the shedding of MT5-MMP in a dose-dependent manner. As expected, decanoyl-Arg-Val-Lys-Arg-chloromethylketone also prevented the activation of MT5-MMP, raising the possibility that the observed shedding could be autolytic. However, an active site mutant devoid of any catalytic activity, is also shed efficiently, thus ruling out the autolytic pathway. The shedding cleavage was subsequently mapped to the stem region immediately upstream of the transmembrane domain, where a cryptic furin recognition site, (RRKERR)-R-545, was recognized. Indeed, MT5-MMP and furin are co-localized in the trans-Golgi network and the shed species could be detected inside the cells. Furthermore, deletion mutations removing this cryptic site prevented MT5-MMP from shedding. The resulting mutants express a gain-of-function phenotype by mediating more robust activation of proMMP-2 than the wild type molecule. Thus, shedding provides a potential mechanism to regulate proteolytic activity of membrane-bound MMPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available