4.8 Article

Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.201398798

Keywords

-

Ask authors/readers for more resources

Synaptotagmin I is a synaptic vesicle-associated protein essential for synchronous neurotransmission. We investigated its impact on the intracellular Ca2+-dependence of large dense-core vesicle (LDCV) exocytosis by combining Ca2+-uncaging and membrane capacitance measurements in adrenal slices from mouse synapto-tagmin I null mutants. Synaptotagmin I-deficient chromaffin cells displayed prolonged exocytic delays and slow, yet Ca2+-dependent fusion rates, resulting in strongly reduced LDCV release in response to short depolarizations. Vesicle recruitment, the shape of individual amperometric events, and endocytosis appeared unaffected. These findings demonstrate that synaptotagmin I is required for rapid, highly Ca2+-sensitive LDCV exocytosis and indicate that it regulates the equilibrium between a slowly releasable and a readily releasable state of the fusion machinery. Alternatively, synaptotagmin I could function as calcium sensor for the readily releasable pool, leading to the destabilization of the pool in its absence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available