4.4 Article

Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin

Journal

BIOCHEMISTRY
Volume 40, Issue 38, Pages 11308-11317

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi011027d

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 29498] Funding Source: Medline

Ask authors/readers for more resources

In the N to O reaction of the bacteriorhodopsin photocycle, Asp-96 is protonated from the cytoplasmic surface, and coupled to this, the retinal isomerizes from 13-cis,15-anti back to the initial all-trans configuration. To dissect the two steps, and to better understand how and why they occur, we describe the properties of two groups of site-specific mutants in which the N intermediate has greatly increased lifetime. In the first group, with the mutations near the retinal, an unusual N state is produced in which the retinal is 13-cis,15-anti but Asp-96 has a protonated carboxyl group. The apparent pK(a) for the protonation is 7.5, as in the wild-type. It is likely that here the interference with N decay is the result of steric conflict of side-chains with the retinal or with the side-chain of Lys-216 connected to the retinal, which delays the reisomerization after protonation of Asp-96. In the second group, with the mutations located near Asp-96 or between Asp-96 and the cytoplasmic surface, reprotonation of Asp-96 is strongly perturbed. The reisomerization of the retinal occurs only after recovery from a long-living protein conformation in which reprotonation of Asp-96 is either entirely blocked or blocked at low pH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available