4.8 Article

A Bragg glass phase in the vortex lattice of a type II superconductor

Journal

NATURE
Volume 413, Issue 6854, Pages 404-406

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/35096534

Keywords

-

Ask authors/readers for more resources

Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order(1). The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into 'crystallites'(2). But a different theory(3) predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The 'lattice' of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas(4). Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions(4-6) and the dramatic jumps in the critical current(7,8) associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals(9,10) and the conductivity of electronic crystals(11,12).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available