4.6 Article

Copper specifically regulates intracellular phosphorylation of the Wilson's disease protein, a human copper-transporting ATPase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 39, Pages 36289-36294

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M102055200

Keywords

-

Funding

  1. NIDDK NIH HHS [1RO1-DK55719] Funding Source: Medline

Ask authors/readers for more resources

Copper is a trace element essential for normal cell homeostasis. The major physiological role of copper is to serve as a cofactor to a number of key metabolic enzymes. In humans, genetic defects of copper distribution, such as Wilson's disease, lead to severe pathologies, including neurodegeneration, liver lesions, and behavior abnormalities. Here, we demonstrate that, in addition to its role as a cofactor, copper can regulate important posttranslational events such as protein phosphorylation. Specifically, in human cells copper modulates phosphorylation of a key copper transporter, the Wilson's disease protein (WNDP). Copper-induced phosphorylation of WNDP is rapid, specific, and reversible and correlates with the intracellular location of this copper transporter. WNDP is found to have at least two phosphorylation sites, a basal phosphorylation site and a site modified in response to increased copper concentration. Comparative analysis of WNDP, the WNDP pineal isoform, and WNDP C-terminal truncation mutants revealed that the basal phosphorylation site is located in the C-terminal Ser(796)-Tyr(1384) region of WNDP. The copper-induced phosphorylation appears to require the presence of the functional N-terminal domain of this protein. The novel physiological role of copper as a modulator of protein phosphorylation could be central to understanding how copper transport is regulated in mammalian cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available