4.6 Article

Fibroblasts in mechanically stressed collagen lattices assume a synthetic phenotype

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 39, Pages 36575-36585

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M101602200

Keywords

-

Ask authors/readers for more resources

Fibroblasts are subjected to changes of the mechanical force balance during physiological as well as pathological situations, such as wound healing, development of hypertrophic scars, and fibrogenesis. However, the molecular response and the changes in fibroblast gene expression upon mechanical stimulation remain poorly understood. As an in vitro model, human dermal fibroblasts were cultured within a three-dimensional network of fibrillar collagen either under high (stressed) or low tension (relaxed). cDNA microarray technology in combination with Northern blot analysis led to identification of mechano-responsive genes coding for extracellular matrix proteins, fibrogenic growth factors, protease inhibitors, components of focal adhesions, and the cytoskeleton. Application of biaxial strain to fibroblasts cultured on flexible silicone membranes revealed that the type of strain as well as the properties of the substrate induced different patterns of gene regulation. The transcriptional profile of mechanically induced genes in collagen lattices suggests that mechanical stimuli lead to a synthetic fibroblast phenotype characterized by induction of connective tissue synthesis while simultaneously inhibiting matrix degradation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available