4.6 Article

Dynamic permeability in soft magnetic composite materials

Journal

JOURNAL OF APPLIED PHYSICS
Volume 90, Issue 7, Pages 3462-3465

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1389520

Keywords

-

Ask authors/readers for more resources

This article reports on an isotropic model of the magnetic susceptibility based on an average field theory and proposes to predict the dynamic behaviors of powder magnetic materials. It was essentially built around a so-called effective demagnetizing factor capable of taking the particle shapes into account. So, for a population of randomly distributed particles of anisotropic shapes like, for instance, needles or flakes, we show that the effective demagnetizing factor of this population of particles can be significantly lowered with regard to the well known value of 1/3 classically used to represent the isotropy state. This phenomenon is interpreted as the natural tendency of particles to form clusters to which a moving demagnetizing factor must be assigned. Taking then the aggregation process of particles into account, the ability of the model to predict the dynamic properties of many composite magnetic materials is successfully demonstrated. Our development is illustrated by experimental results concerning a nickel-zinc ferrimagnetic (Ni0.7Zn0.3Fe2O4) powder. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available