4.2 Article

Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators

Journal

AMERICAN JOURNAL OF PHYSICS
Volume 69, Issue 10, Pages 1096-1102

Publisher

AMER INST PHYSICS
DOI: 10.1119/1.1389278

Keywords

-

Ask authors/readers for more resources

A weakly driven pendulum cannot be strongly excited by a fixed frequency drive. The only way to strongly excite the pendulum is to use a drive whose frequency decreases with time. Feedback is often used to control the rate at which the frequency decreases. Feedback need not be employed, however; the drive frequency can simply be swept downwards. With this method, the drive strength must exceed a threshold proportional to the sweep rate raised to the 3/4 power. This threshold has been discovered only recently, and holds for a very broad class of driven nonlinear oscillators. The threshold may explain the abundance of 3:2 resonances and dearth of 2:1 resonances observed between the orbital periods of Neptune and the Plutinos (Pluto and many of the Kuiper Belt objects), and has been extensively investigated in the Diocotron system in pure-electron plasmas. (C) 2001 American Association of Physics Teachers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available