4.4 Article

Rules of thumb for conservation of metapopulations based on a stochastic winking-patch model

Journal

AMERICAN NATURALIST
Volume 158, Issue 4, Pages 389-407

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/321986

Keywords

colonization; extinction; metapopulation; conservation

Ask authors/readers for more resources

From a theoretical viewpoint, nature management basically has two options to prolong metapopulation persistence: decreasing local extinction probabilities and increasing colonization probabilities. This article focuses on those options with a stochastic, single-species metapopulation model. We found that for most combinations of local extinction probabilities and colonization probabilities, decreasing the former increases metapopulation extinction time more than does increasing the latter by the same amount. Only for relatively low colonization probabilities is an effort to increase these probabilities more beneficial, but even then, decreasing extinction probabilities does not seem much less effective. Furthermore, we found the following rules of thumb. First, if one focuses on extinction, one should preferably decrease the lowest local extinction probability. Only if the extinction probabilities are (almost) equal should one prioritize decreases in the local extinction probability of the patch with the best direct connections to and from other patches. Second, if one focuses on colonization, one should preferably increase the colonization probability between the patches with the lowest local extinction probability. Only if the local extinction probabilities are (almost) equal should one instead prioritize increases in the highest colonization probability (unless extinction probabilities and colonization probabilities are very low). The rules of thumb have an important common denominator: the local extinction process has a greater bearing on metapopulation extinction time than colonization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available